Junction Style Guide/Interchange: Difference between revisions Discussion View history

(fixed redirects)
m (Text replacement - "Category:Style Guides" to "Category:Style guides")
 
(25 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{ReturnTo | Junction_Style_Guide | the Junction Style Guide}}
{{ReturnTo | Junction_Style_Guide | the Junction Style Guide}}


An '''interchange''' is a road junction where two roads are connected by dedicated roadways, called '''ramps'''. The roads connected by an interchange do not intersect one another directly, and if they cross, the crossing is grade-separated.
An '''interchange''' is a road junction where traffic can move between roads that do not intersect. The roads are connected by ramps, and if they cross, the crossing is grade-separated. They are most commonly used where one or more roads is a controlled-access highway. Complex interchanges may contain many highways and local roads meeting within small areas. Many different layouts have been developed by traffic engineers to optimize interchanges for size, complexity, traffic safety, navigation, and unimpeded traffic flow.


Since interchanges often involve grade-separated crossings, the [[road elevation]] of the segments becomes important. If two roads cross without connecting directly, their elevations must be different.
This article is a sub-article of the [[Junction Style Guide]]. As such, '''this article is a style guide''' as well. Representing interchanges on the map can be exacting and difficult. The guidance on this page will help editors to create accurate and usable map versions of these interchanges. The following sections discuss the proper style for ramps, interchanges, and some common interchange designs. Note that some interchanges may be a hybrid of these basic designs where one side or quadrant of the interchange may differ from the others. Also note that since interchanges often involve grade-separated crossings, the [[road elevation]] of the segments becomes important. If two roads cross without connecting directly, their elevations must be different.
 
This article is a sub-article of the [[Junction Style Guide]]. As such, '''this article is a Style Guide''' as well. The following sections discuss the proper style for ramps, interchanges, and some common Interchange designs. Note that some interchanges may be a hybrid of these basic designs where one side or quadrant of the interchange may differ from the others.


Before reading through this article, be sure to fully understand the information in the [[Junction Style Guide]].
Before reading through this article, be sure to fully understand the information in the [[Junction Style Guide]].


== Ramps ==
==Ramps==


Ramps have a very specific purpose in Waze. They are intended to connect segments of Minor Highways, Major Highways, and Freeways to roads where there are no at-grade crossings.
Ramps have a very specific purpose in Waze. They are intended to connect segments of minor highways, major highways, and freeways to roads where there are no at-grade crossings.


The {{Ramp}} type is used extensively in interchanges for three reasons.
The {{Ramp}} type is used extensively in interchanges for three reasons.
* Ramp segment names are not displayed on the map.
* Ramp segments have essentially no penalty, so they can be used to connect Freeways and Major Highways with each other without causing problems.
* Ramp segments are relatively small but show at high zoom levels, so interchanges do not distract from highways but can be seen at high speeds.


=== When to use ramps ===
*Ramp segment names are not displayed on the map.
*Ramp segments have essentially no penalty, so they can be used to connect freeways and major highways with each other without causing problems.
*Ramp segments are relatively thin but show at wide zoom levels, so interchanges do not distract from highways but can be seen at high speeds.
 
===When to use ramps===


Use of the {{Ramp}} type is governed by the following rules:
Use of the {{Ramp}} type is governed by the following rules:
* [[Road types]]
* [[At-grade connectors]]


=== Ramp geometry and complexity ===
*[[Road types]]
*[[At-grade connectors]]


When placing the beginning of a ramp, place the first [[geometry node]] of the ramp segment at the point where the solid white line begins, and extend the ramp naturally to create a junction with the road segment, typically at a 10–15° angle. This will allow for consistent timing of exit instructions.
==Geometry==


: [[Image:Exit-ramp-geom.png]]
===Exits, forks, and wayfinders===
This section concerns the geometry of the following junctions:


Do the same when placing the end of a ramp. This will allow for consistent auto-zoom functionality—the client remains zoomed in for the duration of the ramp, zooming out when the user gets on the freeway.
*'''exits''', which are junctions at which ''one'' outbound segment (typically a ramp) carries traffic off of a road and the other outbound segment continues the same road as the entry segment;
*'''forks''', which are junctions at which ''either both or neither'' outbound segment continues the same road as the entry segment; and
*'''wayfinders''', a type of exit or fork which is set up to instruct the driver to stay on the road they're already on.


: [[Image:Entrance-ramp-geom.png]]
When mapping an exit or fork (or wayfinder), there is one guiding question: '''is there one clear straight-ahead path?''' That is, does one and only one outbound segment clearly continue the same path as the inbound segment?


Rule #1 is still simpler is better. If there is no large distance between paths at the end of a ramp (either into or out of the ramp), a single segment connecting to a single junction node is all that is needed. The existence of a painted, concrete, or grass island is '''NOT''' enough of a reason to divide a ramp into multiple ramps.
<gallery>
File:Aheadpath2.jpg|Yes, the left path is the clear straight-ahead path—even though these are exit ramps and there is no “continuation” per se, the left path is totally straight while the right path diverges immediately.
File:Aheadpath3.jpg|No, there is no clear straight-ahead path—both paths are equally straight ahead, so there is not ''one'' clear straight-ahead path.
File:Aheadpath1.jpg|No, there is no clear straight-ahead path. This is a "typical" ramp fork.
File:Aheadpath4.jpg|No, there is no clear straight-ahead path—both paths are equally straight ahead, so there is not ''one'' clear straight-ahead path.
</gallery>


: [[Image:Jct_ramp_no_split.png]]
====Where there is a clear straight ahead path====
The straight ahead path should be more or less straight, with a smooth transition.


When paths at the end of the ramp deviate significantly in distance, regardless of the existence of any type of island, then multiple ramps should be used.
The diverging path should be configured as follows:


: [[Image:Jct_ramp_split.png]]
*First, place the first [[geometry node|geometry handle]] of the diverging segment as follows:
**on freeway exits and other similarly-configured ramps, at the '''nearest point''' to the exit from the following:
***If there's no solid white line, at the gore point (or "theoretical gore", i.e., where the painted lines diverge)
***If there's a solid white line, at its beginning
***On a multi-lane exit, at the gore point or solid white line between the inner exit lane and the adjacent continuing lane
***1/4 mile before the gore point, on exits with a longer solid white line
***Halfway between the gore points of the exit and the previous exit
**on at-grade connectors, at the '''gore point'''.[[File:NaturalDeparture.jpg|thumb|Use the natural departure angle for a segment with a true departure angle of at least 20°.|250x250px]]
*Next, grab the node itself, where the segments meet, and adjust the geometry of the exit itself as follows:
**If the actual path of the exit diverges from the inbound path by less than 20°, adjust the node to create a 20° departure angle. This will allow for consistent timing of exit instructions and make it easier to report closures in the Waze client.
**If the actual path of the exit diverges immediately from the inbound path by more than 20°, adjust the node such that the exit path follows its true natural departure angle.
*Finally, ensure that the last geometry handle before the node is at least 40 feet ahead of the node, and that the second geometry handle on the diverging path is at least 40 feet beyond the first geometry handle.


== Interchange types ==
[[File:ExitRampShort.jpg|900px]]
These are junctions involving the three Highway/Freeway road types - {{Minor Highway}}, {{Major Highway}}, and {{Freeway}} -- as well as their {{Ramp|Ramps}}.
{{clear}}
 
Specific examples of how to handle common junction types are provided in later sections.  All of those examples use the basic building blocks provided here.
 
If you are unsure what road type you should use, refer to the '''[[road types]]''' article.
 
=== Exits ===
It is a basic Exit situation when a "straight" direction is obvious to a driver and navigation instructions are only needed for the non-straight direction (the exit.)  If navigation instructions are required for both directions, see the [[#Wayfinders|Wayfinders]] section below.
 
==== Exit geometry ====
: [[Image:Jct_fwy_exit.png]] [[Image:Jct_maj_exit.png]] [[Image:Jct_min_exit.png]]


To be treated as a basic Exit, the following must be true:
====Where there is not a clear straight ahead path====
# The entering segment and the continuing segment must be {{Freeway}}, {{Major Highway}}, or {{Minor Highway}} type,
[[File:Essentiallysymmetrical.jpg|thumb|Essentially symmetrical: yes, departure angles of outbound segments are very close (7° and 8°). At least 15°: yes (de-select any segments and select the node to check).|250px]]
# The Freeway/Highway continuing segment should have close to a zero degree departure angle from the entering segment,
Whether both outbound paths are or neither outbound path is straight ahead:
# The other exiting segment must be of the type {{Ramp}}, and
# The Ramp exiting segment should have a departure angle around 10–15 degrees from the entering segment, as explained above.


When those conditions are met, the navigation will present an "Exit Right/Left" instruction when the ramp is to be used, and will remain silent when the continuing Freeway/Highway segment is to be used.
*First, adjust the inbound segment geometry to follow the inbound segment's true path.
 
*Next, set the first geometry handles of both outbound segments in line with the gore point.
==== Exit naming ====
*Finally, grab the node and adjust such that the angle between the outbound segments is at least 15°:
The Highway/Freeway segments before and after the junction should be named the same. The ramp segments should be named in accordance with the best practices in your location.
**If following the true natural departure angles of the outbound segments leads to an inner angle of more than 15°, then do so.
 
**If the outbound segments are equally straight ahead, ensure that the outbound paths at the node are '''essentially symmetrical'''.
[[Road names#Exit_ramps_and_Entrance_ramps_.28on-ramps.29|US Specific Ramp Names]]
 
[[Road types and names|Naming standards for other areas]]
 
Editors covering areas that do not have specific best practices should review the existing guides for other areas, and determine which best matches the roadways of your area.
 
=== {{anchor|Freeway/highway splits}} Freeway/highway forks===
A Highway/Freeway Fork  is when a Highway/Freeway segment meets at a junction with two other Highway/Freeway segments and there is no obvious straight through direction to a driver.  This is synonymous with the MUTCD term "split".
 
==== {{anchor|Freeway split geometry}}Freeway fork geometry ====
: [[Image:Jct_fwy_fwy_split.png]]
 
To receive a navigation instruction for '''both''' branches of a fork, the following must be true:
# Both exiting segments must be the same type (Freeway, Major Highway, Minor Highway).
# Each exiting segment must have a name which is different from the name of the entering segment.
# The two exiting segments should have departure angles around 10 to 15 degrees from the entering segment.
 
With those conditions met, the junction will present "stay to the left" and "stay to the right" navigation instructions using the name of the appropriate exiting segment.
 
==== {{anchor|Freeway split naming}}Freeway fork naming====
 
The primary rule is that all 3 segments at the junction must have different names.  That can be accomplished in one of two ways:
# Using road names alone - It is an easy situation if all three roads which connect have different names.  If "Highway A" forks into "Highway B" and "Highway C", then that is all we need to have a properly functioning fork.
# Using signs and [[#Wayfinders|Wayfinder Segments]] - If one of the branches of the fork has the same name as the entering segment, we must create uniqueness at the junction. If "Highway X" forks off from "Highway Y" and "Highway X" continues as the other branch, the preferred approach is to use named [[#Wayfinders|Wayfinder Segments]].
 
=== Wayfinders ===
 
A '''wayfinder''' gives a user an instruction directing them how to continue on the road the user is already on, in situations where it may be unclear, and there would otherwise be no instruction.
 
 
==== Terminology ====
 
A '''travel lane''' is a lane which is long enough that a naïve driver might consider it a long-distance lane. For our purposes we will clarify this as any lane which;
#before nearing the exit, is neither striped nor signed as a departing lane over a significant length (approximately ¾ a mile, or its full length, whichever is shorter), and
#has not just started within a mile before the exit.
 
The '''typical side''' for an exit depends on the traffic side for that country. In a country with [[Right-hand traffic]] i.e. the USA, the typical side for an exit is the right side.
 
The '''atypical side''' for an exit is the opposite of the typical side described above.
 
A '''continuation path''' or '''continuation''' is the group of lanes after the fork which continue to be the same road as it was before the fork. (In the following example, the lanes which continue to be I-47)
 
[[File:Lane definitions.png|400px|thumbnail|center]]
{{clear}}
{{clear}}
====Re-entry====
Where a ramp or AGC enters the flow of traffic, the driver's path should do so smoothly and naturally. Place the final geometry handle at the gore point or end of the solid white line, then grab the node and pull it along the road to create a smooth, natural entry angle.
[[File:EntranceRamp.jpg|900px]]


==== Criteria ====
Where an exit ramp ends at an intersection with a road, generally, map as you would any other intersection.


A wayfinder is warranted in the following cases:
*If an exit ramp forks into distinct and separate paths, particularly on either side of a painted or physical island, create a fork with multiple outbound ramp segments.
*The continuation path on a controlled-access highway or freeway, when an exit is present on the typical side, has at least two fewer ''travel lanes'' after the exit than before it;
*Where the ramp continues as a single roadway, and in some cases where a traffic island exists but is not particularly large or significant, a single ramp segment will suffice.
*The continuation path on a controlled-access highway or freeway has the same number of lanes as, or fewer lanes than, the exit path after the fork;
*The continuation path on an uncontrolled highway, or when an exit is present on the atypical side of a controlled-access highway or freeway, has at least one fewer ''travel lane'' after the exit than before it;
*The continuation path consists of a single lane; or
*Other conditions exist that may suggest a fork, rather than an exit (use your better judgement, and discretion) -- for example:
**The physical roadway itself forks or diverges with no clear straight-ahead direction;
**The road which appears to be straight ahead is not the actual continuation;
**Signage and striping do not clearly provide all expected "exit" indications, or do so inconsistently; or
**Signs are present with arrows pointing left and right but no sign clearly establishes the continuation.


Generally, the same rules used to determine whether to map [[at-grade connectors]] can be used to determine whether to map a ramp island separately.
<gallery>
File:RampIslands.jpg|With a ramp island of significant size, use separate segments.
File:Junction style simple ramp (2).PNG|Map as you would any normal intersection.
</gallery>
=={{anchor|Interchange types}}Mapping considerations==
Consider the following when editing interchanges and their component junctions.


{{NeedImage| Need sample images for "lane drops" and "non-obvious continuations"; also, example of BGS with lane arrows}}
===Turn instructions===
Where the inbound segment is a {{Freeway}}, {{Major Highway}}, or {{Minor Highway}}, if an instruction is given to a specific outbound segment,


[[File:FreewayS-inS-out.png|200px|right]]
*The default instruction to an outbound {{Ramp}} segment on the ''right'' will be "Exit right".
In these cases, we need to use a wayfinder configuration. Each wayfinder configuration will have one "IN" segment and two "OUT" segments.
*The default instruction to an outbound {{Ramp}} segment on the ''left'' will be "Keep left."
*The default instruction to an outbound {{Freeway}}, {{Major Highway}}, or {{Minor Highway}} segment will be ''Keep left'' or ''Keep right''.


==== Configuration ====
As such, if a different instruction than the default is desired in any of these situations, use a [[turn instruction override]].


These configurations have been designed based on a very in-depth understanding of [[How_Waze_determines_turn_/_keep_/_exit_maneuvers|Waze's standard rules for generating instructions]]. Please don't deviate from these precise configurations.
===Road names===
Guidance for naming highway and ramp segments is found in the [[road names]] article.


* Each "stub" segment should be {{:Segment length/Minimum}} long. This is long enough so it will not cause routing problems, but it is short enough to suppress display of the names (on Freeway stubs) and keep freeways looking contiguous (on Ramp stubs).
====Concurrent routes====
* The OUT segments should have a ''turn angle'' of 10°-20° off of the mid-line on opposite sides of each other, consistent with [[Junction_Style_Guide/Interchanges#Freeway_split_geometry|the geometry for freeway forks]]. This will allow for easy identification in WME, but still look seamless in the client app.
If an exit carries a concurrent route away from the highway (e.g., a U.S. highway that was carried by an interstate up to the exit but splits off at the exit), that route designation should be added as an alternate name on all ramp segments that carry it. Note that this may affect the expected behavior of [[audible instructions]], such that [[turn instruction override]]s may be needed.


====Using road name inheritance====
[[File:RampforkMUTCD.png|thumb]]


To configure the wayfinder,  
In some situations, name inheritance should be used to provide optimal instructions. If a ramp is unnamed ("no name" box checked), the name of the next named road along the route will propagate backwards in navigation instructions. This is useful both for the sake of simplicity and for giving more specific instructions to traffic at exits with ramp forks. If an unnamed ramp is used at an exit and subsequent named ramps are used after the fork, drivers will see the name of whichever side of the fork they need to go to before they exit the highway. This method will provide more sufficient notification of an approaching decision point than a named exit ramp would, and it should be used as long as the names of both ramp forks are visible on signs at the start of the initial ramp. If an exit ramp has multiple lanes with a sign or part of a sign over each lane, using this method can even function as a form of lane guidance. If the example on the right from the MUTCD were mapped using name inheritance, the ramp exiting I-42 would not be named. The ramp that goes to I-17 southbound would be named "Exit 36: I-17 S / Portland" and the ramp that goes to I-17 northbound would be named "Exit 36: I-17 N / Miami." This would produce the following instructions:
* If the numbered/signed exit is on the '''right''', the OUT segments should be {{Ramp}} type. This will give an "exit right" instruction for the exit and a "stay to the left" instruction for the continuation.  
** For a basic [[Junction Style Guide/Interchanges#Exits|exit]], use a named Ramp stub for the continuation, and a standard Ramp for the exit.
** For a [[Junction Style Guide/Interchanges#Freeway.2Fhighway splits|freeway fork]], use a Ramp stub on both sides.
* If the numbered/signed exit is on the '''left''', the OUT segments type should be the same as {{Road|style=background-color: #fbe73f;|the IN segment}}, in the following examples we will use the {{Freeway}} type. This will give "stay to the" instructions on both sides (if {{Ramp}} segments were used, Waze would give a confusing "exit right" instruction for the continuation).
** For a basic [[Junction Style Guide/Interchanges#Exits|exit]], use a named Freeway stub for the continuation, and an unnamed Freeway stub followed by a named Ramp for the exit.
** For a [[Junction Style Guide/Interchanges#Freeway.2Fhighway splits|freeway fork]], use named Freeway stubs on both sides.


<div style="font-size:smaller">
*Traffic heading south on I-17 would receive
{| class="wikitable" style="text-align:center"
*#at the exit: exit right to Exit 36: I-17 S / Portland
|-
*#at the fork: keep right to Exit 36: I-17 S / Portland
! Exit direction
*Traffic heading north on I-17 would receive
! Type
*#at the exit: exit right to Exit 36: I-17 N / Miami
! Left OUT configuration
*#at the fork: keep left to Exit 36: I-17 N / Miami
! Right OUT configuration
! Example
|-
| Right
| Basic exit
| '''Continuation side'''<br/>{{Ramp|Named Ramp stub}} → {{Freeway|Named Fwy}}
| '''Exit side'''<br/>{{Ramp|Named Ramp}}
| [[File:RightExitRamp.png|191px]]
|-
| Right
| Fwy fork
| '''Continuation side'''<br/>{{Ramp|Named Ramp stub}} → {{Freeway|Named Fwy}}
| '''Exit side'''<br/>{{Ramp|Named Ramp stub}} → {{Freeway|Named Fwy}}
| [[File:RightExitSplit.png|191px]]
|-
| Left
| Basic exit
| '''Exit side'''<br/>{{Freeway|Unnamed Fwy stub}} → {{Ramp|Named Ramp}}
| '''Continuation side'''<br/>{{Freeway|Named Fwy stub}} → {{Freeway|Named Fwy}}
| [[File:LeftExitRamp.png|189px]]
|-
| Left
| Fwy fork
| '''Exit side'''<br/>{{Freeway|Named Fwy stub}} → {{Freeway|Named Fwy}}
| '''Continuation side'''<br/>{{Freeway|Named Fwy stub}} → {{Freeway|Named Fwy}}
| [[File:LeftExitSplit.png|191px]]
|}
</div>


==== Segment naming ====
Note that even though the exit number is by design not shown on signs at the ramp fork, it should be included in the names of the ramps for proper instructions at the exit. If signs at the ramp fork differ more significantly from signs at the exit, a different method of naming should be used.
Keep these basic principles in mind:
* The OUT segments must both be the same type (either {{Freeway}}, {{Major Highway}}, {{Minor Highway}}, or {{Ramp}}, as explained below).
* Each OUT segment must have a name different than the IN segment.
** '''NOTE:''' An unnamed segment (no-name box checked) is considered to have a blank name, and not the inherited name for these purposes. Therefore either both OUTs must be no-name, or both must have their own unique name.
* OUT segments should be named with the information displayed on the roadway signs.
** However, if this would leave an OUT segment with the same name as the IN segment, the OUT segment should be left unnamed (i.e., check the "no name" box).


{{mbox|type=important|text=Previously in these situations segment naming was modified in one of the following ways {{u|''in order of preference''}}:
=====Name inheritance, but signage on consecutive signs are different=====
#Add a control/destination city, if it is known, to the OUT segment name.
[[File:PseudoWF.png|thumb]]
#Remove the compass cardinal from the OUT segment name.
#Add a space to the end of the OUT segment name (note that this will be flagged by the [[Community_Plugins,_Extensions_and_Tools#WME_Validator|WME Validator script]], if active, and possibly result in undoing by another editor)
#Create a stub in the IN segment just before the junction with no street name.
#*'''NOTE:''' This option should only be used as a last resort because it prevents the [[Routing_server|routing server]] from properly calculating [[Turn delays|turn delays]], and may result in inefficient routing through the area.


If you see any of these set-ups, please correct it to one of the two proper methods listed above.}}
If separate or split signs exist for traffic at an exit, but the signs at the ramp fork differ significantly from them, such as being further split or showing additional route numbers or control cities, the following method can be used:


If the continuation is '''signed''', and a wayfinder is warranted,
#Leave the exit ramp unnamed
* If the continuation sign contains the name or shield of the continuing road, do '''not''' use "to" at the beginning of the name of the OUT segment. e.g., a freeway fork where one side is the continuation of the same freeway (the user is already on the road, not going "to" it). Most wayfinders will fit this criterion.
#At the ramp fork create a turn instruction override for no instruction going into a stub ramp segment of {{:Segment length/Minimum}}
**If the name of the continuation is included but is not listed first on the sign, move the name of the continuing road to the beginning of the segment name.  (e.g. In this wayfinder the highway you are on now, and continuing on is I-275, so the segment name should be "I-275 N / I-74 E / US-52 E / Cincinnati".)
#Name the stub according to the sign at the ''exit''
* If the continuation sign '''does not contain''' the name or shield of the continuing road, then the road name should begin with "to".
#At the junction of the stub with the next ramp segment create a turn instruction override to match the expected instruction at the ramp fork, either keep left or right
#Name the next ramp segment according to the sign at the ''ramp fork'' or leave it unnamed to inherit farther ramp names


Because of name inheritance, the shortness of the stub, and the combination of turn instruction overrides, the name of the stub will be used in instructions at the exit, and the name of the ramp past the stub will be used at the ramp fork. This method should only be used when it's not possible to replicate what drivers see on guide signs using simple naming or name inheritance.


If the word "TO" is explicitly included on the continuation sign,
===Wayfinders===
* [[File:Wayfinder To BGS.png|300px|thumbnail|right]]Move the shields or names affected by the "TO" to the end of the segment name after a slash (/). (The example BGS shown is for the continuation of I-80, which leads to I-280, with a control city Morristown.)
A '''[[wayfinder]]''' is defined as any junction configured to instruct drivers to stay on the road they're already on. Wayfinders are generally used where, for one reason or another, the continuation of the highway is not obvious to drivers. For criteria and further details on mapping wayfinders, see [[wayfinder]] and [[turn instruction override]].
** If any included control cities or road names correlate only to the roads affected by the "TO", then those control cities or road names should be moved after the "/ to [road(s)] /" on the segment name.
*** [[File:Wayfinder To WME.png|300px|thumbnail|right]] If Morristown is served by I-280 and ''not'' by I-80, the continuation segment should be '''"I-80 / to I-280 / Morristown"'''.
** If any included control cities or road names correlate to the roads '''not''' affected by the "TO", then those control cities or road names should remain in place before "/ to [road(s)]".
*** If Morristown is served by I-80, the continuation segment should be named '''"I-80 / Morristown / to I-280"'''.{{clear}}


=={{Anchor|Interchange configurations}}Configurations==


If the continuation is '''not signed''', and a wayfinder is warranted,
==={{anchor|Diamond interchange}}Diamond===
* If the OUT segment is a continuation of the same road, it should be left unnamed (check the "no name" box).
* If the OUT segment is an exit, it should be named following the guidelines for an unsigned exit.
* If the OUT segment is a short continuation of the same road leading to another road, name the segment starting with "to" followed by the name of the road to which the continuation leads, following these guidelines:
** {{anchor|no BGS to}}[[File:No BGS To exit.PNG|300px|thumbnail|right]]Where the wayfinder is just before, but not at, the termination of a road, so the continuation OUT segment is named for the road that the continuation leads to at the termination. However you still must travel for a short distance on the continuation of this road until those exits/termination. [[File:No BGS To exit zoom out.PNG|300px|thumbnail|right]]Our example here is a wayfinder on US-1-9 N (Truck), the left OUT is the continuation, however the right OUT also continues on the same road until it intersects with SR-440, with an exit to SR-440 S along this short segment. There are no roadway signs for any of these forks, or exits/terminations. The OUT segment here would be named '''"to SR-440 S / Communipaw Ave"''', and the SR-440 exit will be named following the [[Road_Names#Exit_ramps_and_entrance_ramps_.28on-ramps.29|unsigned exit guidelines]]. However it may be appropriate (if there are no House Numbers, or other on ramps past this wayfinder before it reaches the exit, to leave this entire portion with no name, and the instruction will inherit the name of the next road to which you are going.{{clear}}


:[[File:Diamond interchange.PNG|750px]]


Wayfinder naming examples
''See also: [[Wikipedia:Diamond_interchange|Diamond interchange article on Wikipedia]]''
<div style="font-size:smaller">
{| class="wikitable" style="text-align:center"
|-
! #
! Continuation sign
! Continuing road name
! Rule
! Waze road name
|-
| colspan="3" | [[File:Wayfinder I-10 BGS.png|225px|thumbnail|center]]
| [[File:Wayfinder I-10 WME.png|225px|thumbnail|center]]
| context image
|-
| 1
| I-10 E / New Orleans Business District
| I-10 E
| Matches - do not use "to"
| '''I-10 E / New Orleans Business District'''
|-
! #
! Continuation sign
! Continuing road name
! Rule
! Waze road name
|-
| colspan="3" | [[File:Wayfinder continuation TO I-71.png|225px|thumbnail|center]]
| [[File:Wayfinder 471 close.png|225px|thumbnail|center]]
| [[File:Wayfinder 471 context.png|225px|thumbnail|center]]
|-
| 2
| I-71 N / Columbus
| I-471 N
| Does not match – use "to"
| '''to I-71 N / Columbus'''
|-
! #
! Continuation sign
! Continuing road name
! Rule
! Waze road name
|-
| colspan="3" | [[File:Wayfinder continue last BGS.png|225px|thumbnail|center]]
| [[File:Wayfinder 275 closeup.png|225px|thumbnail|center]]
| [[File:Wayfinder continue last WME.png|225px|thumbnail|center]]
|-
| 3
| I-74 E / US-52 E / I-275 N / Cincinnati
| I-275 N
| Included but not first – move to beginning
| '''I-275 N / I-74 E / US-52 E / Cincinnati'''
|-
! #
! Continuation sign
! Continuing road name
! Rule
! Waze road name
|-
| colspan="3" | BGS image
| WME image
| context image
|-
| 4
|
|
|
| '''name'''
|-
! #
! Continuation sign
! Continuing road name
! Rule
! Waze road name
|-
| colspan="3" | image
| image
| image
|-
| 5
|
|
|
| '''name'''
|}
</div>


=== Ramp-ramp forks ===
Common in wide open spaces where land acquisition and geography are not concerns, this interchange design has ramps equally distributed across all 4 quadrants.
A ramp may itself fork and branch into two directions.  If this is the case, "Exit Right" and "Exit Left" will be announced using the name of the appropriate exiting segment in all cases.
 
==== Ramp fork geometry ====
: [[Image:Jct_ramp_ramp_split.png]]
 
==== Ramp fork naming ====
If ramps are unnamed, the name of a subsequent ramp will propagate backwards.  In the example above, if the two ramps exiting the junction are named, the ramp entering the junction can be left unnamed.  Then any navigation instruction directing you onto the first ramp would use the name of the appropriate exiting ramp.
 
'''Example:''' The two ramps exiting the junction are named "DestinationLeft" and "DestinationRight".  The ramp that enters the junction is unnamed.  If you need to "Exit Right" onto the unnamed ramp.  If you are headed to "DestinationLeft", navigation would tell you:
* Exit Right to Destination Left
* Keep Left to Destination Left
 
Using unnamed ramps is very useful to provide sufficient notification of an approaching decision point, as long as the names of both ramp forks are visible on signs at the start of the initial ramp.
 
'''Example of good use of unnamed ramps:'''
* Initial Exit Sign: to City A and City B
* Destination Left Sign: to City A
* Destination Right Sign: to City B
Result: An unnamed initial ramp will provide accurate and informative navigation instructions to the driver.
 
'''Example of poor use of unnamed ramps:'''
* Initial Exit Sign: to Downtown
* Destination Left Sign: to Downtown
* Destination Right Sign: to Center St
Result: An unnamed ramp may create confusion, since both destination ramp names are NOT listed on the initial exit sign.  In this case, the initial ramp should be named.
 
'''Example of modified use of unnamed ramps:'''
 
* Initial Exit Sign: Exit 70A-B to City A and City B
* Destination Left Sign: to City A
* Destination Right Sign: to City B
* Destination Left name in Waze: Exit 70A: City A
* Destination Right name in Waze: Exit 70B: City B
Result: By using a modified name for the destination ramps, we have combined information from two sets of signs to generate the advance notice a driver may need to prepare for a decision point.
 
== Interchange configurations ==
 
 
=== Diamond interchange ===
: [[Image:Jct_diamond.png]]
''See also: [[Wikipedia:Diamond_interchange|Diamond Interchange article on Wikipedia]]''
 
Common in wide open spaces where land acquisition and geography are not concerns, this Interchange design has ramps equally distributed across all 4 quadrants.


In the simplest form, this can be represented as single connections from the ramps to the surface street.  
In the simplest form, this can be represented as single connections from the ramps to the surface street.  


The straight through motion from the exit ramp to the entrance ramp should typically be enabled, if legal to drive. Under normal circumstances, the Big Detour Prevention mechanism discourages the routing server from routing someone off the freeway and directly back on. When the freeway path between the ramps is closed, or slow enough to overcome the Detour penalty, this off-on route may be given as a desirable alternative.
The straight through motion from the exit ramp to the entrance ramp should typically be enabled, if legal to drive. Under normal circumstances, the big detour prevention mechanism discourages the routing server from routing someone off the freeway and directly back on. When the freeway path between the ramps is closed, or slow enough to overcome the Detour penalty, this off-on route may be given as a desirable alternative.


Be aware that the Big Detour Prevention penalty is intended to discourage routing that leaves a freeway (or highway) and returns to the same freeway (or highway). Therefore, at least one name (primary or alternate) of the freeway/highway segment before the exit ramp must exactly match one name (primary or alternate) of the freeway/highway segment after the entrance ramp to trigger the penalty. For further information see the [[Detour Prevention Mechanisms|Big Detour Prevention Mechanism]] page.
Be aware that the big detour prevention penalty is intended to discourage routing that leaves a freeway (or highway) and returns to the same freeway (or highway). Therefore, at least one name (primary or alternate) of the freeway/highway segment before the exit ramp must exactly match one name (primary or alternate) of the freeway/highway segment after the entrance ramp to trigger the penalty. For further information see the [[Detour Prevention Mechanisms|big detour prevention mechanism]] page.


:[[Image:Jct_diamond_simple_turns_new.png]]
:[[Image:Jct_diamond_simple_turns_new.png]]


If the ramps connect to the surface street at multiple points, restrict turns which should use another ramp. Review the section [[Junction Style Guide#How complex should ramps be?|How complex should ramps be?]] in the Junction Style Guide for more details on this topic.  
If the ramps connect to the surface street at multiple points, restrict turns which should use another ramp. Review the section on [[Junction Style Guide/Interchange#Ramp geometry and complexity|ramp geometry and complexity]] for more details on this topic.  


First we see the turns that must be restricted for the exit ramps:
First we see the turns that must be restricted for the exit ramps:


: [[Image:Jct_diamond_cplx_turns_off_L_new.png]]  [[Image:Jct_diamond_cplx_turns_off_R.png]]
:[[Image:Jct_diamond_cplx_turns_off_L_new.png]]  [[Image:Jct_diamond_cplx_turns_off_R.png]]


Then we see what must be restricted for the entrance ramps:
Then we see what must be restricted for the entrance ramps:


: [[Image:Jct_diamond_cplx_turns_on.png]]
:[[Image:Jct_diamond_cplx_turns_on.png]]


'''Note on elevations:'''
'''Note on elevation:'''
The single surface street segment between the inner most ramps should be either raised or lowered in relation to the freeway segments depending on the actual geography at the interchange.
The single surface street segment between the inner most ramps should be either raised or lowered in relation to the freeway segments depending on the actual geography at the interchange.


=== Cloverleaf interchange ===
==={{anchor|Cloverleaf interchange}}Cloverleaf===
: [[Image:Jct_cloverleaf.png]]
 
:[[Image:Jct_cloverleaf.png]]


''See also: [[wikipedia:Cloverleaf_interchange|Cloverleaf Interchange article on Wikipedia]]''
''See also: [[wikipedia:Cloverleaf_interchange|Cloverleaf Interchange article on Wikipedia]]''


In a Cloverleaf Interchange, left turns are eliminated from all movements between the Freeway and the surface street. First check the exit ramps.
In a cloverleaf Interchange, left turns are eliminated from all movements between the freeway and the surface street. First check the exit ramps.


: [[Image:Jct_cloverleaf_off_outer_turns.png]] [[Image:Jct_cloverleaf_off_inner_turns.png]]
:[[Image:Jct_cloverleaf_off_outer_turns.png]] [[Image:Jct_cloverleaf_off_inner_turns.png]]


Then check the entrance ramps for illegal turns.
Then check the entrance ramps for illegal turns.


: [[Image:Jct_cloverleaf_on_turns.png]]
:[[Image:Jct_cloverleaf_on_turns.png]]


The connections to the Freeway segments may be treated in two ways:
The connections to the freeway segments may be treated in two ways:


:[[Image:Jct_cloverleaf_options.png]]
:[[Image:Jct_cloverleaf_options.png]]


# (top) we can have the inner entrance and exit ramps have their own junction nodes with the Freeway. Do '''NOT''' use this approach if there are [[#Collector.2FDistributor_Lanes|Collector/Distributor Lanes]] (or a similar situation) involved.
#(top) we can have the inner entrance and exit ramps have their own junction nodes with the freeway. Do '''not''' use this approach if there are [[#Collector.2FDistributor_Lanes|collector/distributor lanes]] (or a similar situation) involved.
# (bottom) we can have the entrance and exit ramps share a single junction node with the Freeway. This allows us to eliminate the very short Freeway segment that may exist between the inner entrance and exit ramps.<br />It is best to offset this shared junction onto the Entrance ramp side of the surface street. This prevents the junction from accidentally being connected to the surface street or looking like it does. We favor the Entrance ramp side, because this would result in a slightly earlier exit instruction which is, of course, preferred over a late exit instruction.  
#(bottom) we can have the entrance and exit ramps share a single junction node with the freeway. This allows us to eliminate the very short freeway segment that may exist between the inner entrance and exit ramps.<br />It is best to offset this shared junction onto the entrance ramp side of the surface street. This prevents the junction from accidentally being connected to the surface street or looking like it does. We favor the entrance ramp side, because this would result in a slightly earlier exit instruction which is, of course, preferred over a late exit instruction. Use turn instruction overrides from the entrance ramp to give no instruction to the freeway and an exit instruction to the exit.


The determining factor of which design to use will partly depend on the actual size and scale of the specific interchange and if there is a [[#Collector.2FDistributor_Lanes|Collector/Distributor]] involved.
The determining factor of which design to use will partly depend on the actual size and scale of the specific interchange and if there is a [[#Collector.2FDistributor_Lanes|collector/distributor]] involved.


'''Note on Elevation:'''
'''Note on elevation: '''The single surface street segment between the inner most ramps should be either raised or lowered in relation to the freeway segments depending on the actual geography at the interchange.
The single surface street segment between the inner most ramps should be either raised or lowered in relation to the freeway segments depending on the actual geography at the interchange.
 
==={{anchor|Folded diamond interchange}}Folded diamond===
 
:[[Image:Jct_folded_diamond.png]]


=== Folded diamond interchange ===
: [[Image:Jct_folded_diamond.png]]
''See also: Discussion of Folded Diamonds and A2/B2 Partial Cloverleafs on the [[wikipedia:Partial_cloverleaf_interchange|Partial Cloverleaf Interchange article on Wikipedia]]''
''See also: Discussion of Folded Diamonds and A2/B2 Partial Cloverleafs on the [[wikipedia:Partial_cloverleaf_interchange|Partial Cloverleaf Interchange article on Wikipedia]]''


Geography or property ownership may prevent the ability for an interchange to be constructed with all ramps evenly distributed across the 4 quadrants of the interchange. When only two quadrants are used, it is typically called a Folded Diamond (basically a sub-type of a Partial Cloverleaf Interchange). The ramps may be all on one side (as in the examples in this section) or they may be located in diagonally opposed quadrants.
Geography or property ownership may prevent the ability for an interchange to be constructed with all ramps evenly distributed across the 4 quadrants of the interchange. When only two quadrants are used, it is typically called a folded diamond (basically a sub-type of a partial cloverleaf interchange). The ramps may be all on one side (as in the examples in this section) or they may be located in diagonally opposed quadrants.


The unique situation presented by the Folded Diamond arrangement is having both Entrance and Exit ramps terminating on the same side of the surface street. Ideally both ramps should terminate on the same junction node to permit us to easily restrict the illegal and usually impossible ramp-to-ramp movement.
The unique situation presented by the folded diamond arrangement is having both entrance and exit ramps terminating on the same side of the surface street. Ideally both ramps should terminate on the same junction node to permit easy restriction of the illegal and usually impossible ramp-to-ramp movement.


: [[Image:Jct_folded_diamond_u-turn.png]]'
:[[Image:Jct_folded_diamond_u-turn.png]]'


Like with a basic Diamond Interchange, often it will be necessary to represent the ramps making multiple connections to the surface street. Be sure to read the article [[Junction_Style_Guide#Simple_is_better|Simple is better]] in the Junction Style Guide.  
Like with a basic diamond interchange, often it will be necessary to represent the ramps making multiple connections to the surface street. Be sure to read the [[Junction_Style_Guide#Simple_is_better|Simple is better]] section in the Junction Style Guide.  


Restrict all non-permitted turns.
Restrict all non-permitted turns.


: [[Image:Jct_folded_diamond_off_turns_L.png]] [[Image:Jct_folded_diamond_off_turns_R.png]] [[Image:Jct_folded_diamond_on_turns.png]]
:[[Image:Jct_folded_diamond_off_turns_L.png]] [[Image:Jct_folded_diamond_off_turns_R.png]] [[Image:Jct_folded_diamond_on_turns.png]]
 
'''Note on elevation:''' Similar to a basic diamond interchange, in most cases only the segment of the surface street that crosses the Freeway segments will need to be adjusted up or down.
 
===Single-point urban interchange (SPUI)===


'''Note on Elevation:''' Similar to a basic Diamond interchange, in most cases only the segment of the surface street that crosses the Freeway segments will need to be adjusted up or down.
:[[File:SPUI.PNG|750px]]


=== Single-point urban interchange (SPUI) ===
: [[Image:Jct_SPUI.png]]
''See also: [[wikipedia:Single-point_urban_interchange|Single Point Urban Interchange article on Wikipedia]]''
''See also: [[wikipedia:Single-point_urban_interchange|Single Point Urban Interchange article on Wikipedia]]''


Line 422: Line 221:
The outer branches of the exit ramps are similar to a diamond interchange and ramp to ramp routing should be enabled if possible and legal.  However, in many SPUIs such ramp to ramp routing is not possible:
The outer branches of the exit ramps are similar to a diamond interchange and ramp to ramp routing should be enabled if possible and legal.  However, in many SPUIs such ramp to ramp routing is not possible:


: [[Image:Jct_SPUI_off_outer_turn.png]]
:[[File:SPUI outer branch.PNG|500px]]


Where things get complicated is the inner branches leading to the Single Point.  You need to avoid ramp-to-ramp in two directions and a reverse flow turn. '''Note:''' The ramp-to-ramp motion to facilitate a U-Turn (the top left arrow in the image below) may or may not be allowed depending on the specific interchange.  Please validate this turn.
Where things get complicated is the inner branches leading to the single point.  You need to avoid ramp-to-ramp in two directions and a reverse flow turn. '''Note:''' The ramp-to-ramp motion to facilitate a U-turn (the top left arrow in the image below) may or may not be allowed depending on the specific interchange.  Please validate this turn.


: [[Image:Jct_SPUI_off_inner_turn.png]]
:[[File:SPUI inner branch.PNG|700px]]


Luckily the entrance ramp restrictions are similar to the diamond interchange:
Luckily the entrance ramp restrictions are similar to the diamond interchange:


: [[Image:Jct_SPUI_on_turn.png]]
:[[File:SPUI middle branch.PNG|400px]]


If you were to look at all the restricted turns at once, you may get the false impression that something is very wrong. But as you now know, a SPUI has almost as many restricted turns as allowed ones.
If you were to look at all the restricted turns at once, you may get the false impression that something is very wrong. But as you now know, a SPUI has almost as many restricted turns as allowed ones.


: [[Image:Jct_SPUI_all_turns.png]]
:[[File:SPUI disabled turns.PNG|300px]]


'''Note on Elevation:'''
'''Note on Elevation: '''The two surface street segments (between the outer ramps and connected to the single point) and the four ramp segments connected to the single point should all be the same level, either one higher or one lower than the elevation of the freeway segments above/below the single point.
The two surface street segments (between the outer ramps and connected to the Single Point) and the 4 ramp segments connected to the single point should all be the same level, either one higher or one lower than the elevation of the freeway segments above/below the single point.


=== Collector/Distributor Lanes ===
==={{Anchor|Collector/Distributor Lanes}}Collector/distributor lanes===


These are lanes parallel to, but physically separated from, the lanes of a Freeway that serve to keep merging traffic out of the flow of through traffic on the mainline Freeway.
These are lanes parallel to, but physically separated from, the lanes of a Freeway that serve to keep merging traffic out of the flow of through traffic on the mainline freeway.


Collector/distributor lanes serve as either:
Collector/distributor lanes serve as either:
* some of the ramps in an '''interchange''', or
 
* local lanes in configurations with '''[[wikipedia:local-express lanes|local-express lanes]]'''.
*some of the ramps in an '''interchange''', or
*local lanes in configurations with '''[[wikipedia:local-express lanes|local-express lanes]]'''.




==== Collector/distributor interchanges ====
===={{anchor|Collector/distributor interchanges}}Collector/distributor interchange====


Some interchange configurations make use of collector/distributor lanes to separate lower-speed merging traffic from high-speed through traffic. This is often used in cloverleaf interchanges and in groups of nearby exits.
Some interchange configurations make use of collector/distributor lanes to separate lower-speed merging traffic from high-speed through traffic. This is often used in cloverleaf interchanges and in groups of nearby exits.


===== Collector/distributor cloverleaf =====
=====Collector/distributor cloverleaf=====


This is a cloverleaf interchange that is connected to a collector/distributor instead of directly to the main roadway. Map collector-distributor cloverleaf ramps as you would any other ramp.
This is a cloverleaf interchange that is connected to a collector/distributor instead of directly to the main roadway. Map collector-distributor cloverleaf ramps as you would any other ramp.
Line 458: Line 257:
[[Image:Jct_fc_cloverleaf_bad.png]]
[[Image:Jct_fc_cloverleaf_bad.png]]


The [[Detour Prevention Mechanisms|detour prevention mechanism]] will discourage Waze from routing users onto the collector-distributor and back onto the freeway – as long as the city name on the freeway is the same (or set to "no city") before, throughout, and after the collector-distributor. Previously this feature was not available and the ramps were set up to restrict the through route. Some of these ramp configurations may still be set up that way, so they can now be configured as pictured above with the through route enabled.
The [[Detour Prevention Mechanisms|detour prevention mechanism]] will discourage Waze from routing users onto the collector-distributor and back onto the freeway – as long as the street name on the freeway is the same before, throughout, and after the collector-distributor. Previously this feature was not available and the ramps were set up to restrict the through route. Some of these ramp configurations may still be set up that way, so they can now be configured as pictured above with the through route enabled.


==== Complex collector/distributor interchanges ====
===={{anchor|Complex collector/distributor interchanges}}Complex collector/distributor interchange====


[[Image:Collector-distributor-exit.png|thumb|right|450px|Collector-distributor lanes used in an interchange on I-81 in Christiansburg, Virginia (Exits 118A-B-C)]]
[[Image:Collector-distributor-exit.png|thumb|right|450px|Collector-distributor lanes used in an interchange on I-81 in Christiansburg, Virginia (Exits 118A-B-C)]]
Line 470: Line 269:
{{clear}}
{{clear}}


==== Local-express lanes ====
====Local-express lanes====


[[Image:Local-express.png|thumb|right|450px|A local-express lane configuration on I-96 in Livonia, Michigan]]
[[Image:Local-express.png|thumb|right|450px|A local-express lane configuration on I-96 in Livonia, Michigan]]
Line 479: Line 278:


Where collector/distributor lanes are used as part of a local-express lane configuration,
Where collector/distributor lanes are used as part of a local-express lane configuration,
*use the same type (most likely {{Freeway}}) for the Local lanes as is used for the Express lanes, and
 
*name the road as it is signed: typically "[Name] Local [Direction]": for example, "I-96 Local W" (and "I-96 Express W" for the Express lanes).
*use the same type (most likely {{Freeway}}) for the local lanes as is used for the express lanes, and
*name the road as it is signed: typically "[Name] Local [Direction]": for example, "I-96 Local W" for local lanes (and "I-96 Express W" for the corresponding express lanes).


{{clear}}
{{clear}}


== See also ==
==={{Anchor|
Diverging diamond interchange (DDI)|Diverging diamond interchange|Diverging_diamond_interchange|DDI}}Diverging diamond (DDI)===
 
''See also:'' [[Wikipedia:Diverging_diamond_interchange|Diverging Diamond Interchange]] article on Wikipedia.
[[File:DDI Example Dupont.png|thumb|845x845px|none]]
Diverging diamond interchanges (DDI) are a type of diamond interchange in which the two directions of traffic cross one another on each side of a limited-access roadway. A DDI may pass over or under the limited-access roadway.
 
This type of interchange is unusual, in that it requires traffic to briefly drive on the opposite side of the road from what is customary for the jurisdiction. However, the design of the Diverging Diamond Interchange controls the driver's line of sight to ensure the cross-over action feels natural and goes unnoticed.
 
====Segment directionality====
[[File:DDI Example Dupont - traffic flow.png|thumb|848x848px|Flow of traffic within a diverging diamond interchange|none]]
All ramp and surface street segments are set as one-way. If you are creating a DDI along a road which is not divided, divide the road, first. {{Details|Best map_editing_practice#Dividing_and_un-dividing_divided_highways{{!}}Best map editing practice § Dividing and un-dividing divided highways|how to properly divide/un-divide a road}}
 
====At-grade intersections====
 
=====Junctions=====
 
As with all at-grade intersections in Waze, all DDI at-grade intersections are modeled with junction nodes, ''including'' the two signaled intersections where opposing directions of traffic "cross over" each other (inner surface road junctions). A DDI may also have two outer surface road junctions, where the one-way segments transition to two-way road segments.
 
=====Turn restrictions=====
 
======Overview======
There are four junctions in a DDI at which the turn restrictions must be checked - two inner surface road junctions where traffic crosses, and two outer surface road junctions where the road divides/joins on each side of the DDI.[[File:DDI Example Dupont - turn restrictions.png|thumb|871x871px|All restricted turns within a DDI (displayed by using Shift+Z).|none]]
 
======Inner surface road junctions======
[[File:DDI Example Dupont - turn restrictions - inner - 01.png|none|thumb|871x871px]]
[[File:DDI Example Dupont - turn restrictions - outer - 02.png|none|thumb|870x870px]]Disable the ''two'' turns from one-way segments to the segments carrying traffic the ''opposite'' direction at both inner surface road intersections, for a total of four disabled turns.
 
======Outer surface road junctions======
[[File:DDI Example Dupont - turn restrictions - outer.png|none|thumb|871x871px]]
Disable the ''single'' turn from the one-way segment carrying traffic ''exiting'' the DDI to the one-way segment carrying traffic ''entering'' the DDI at both outer surface road intersections, for a total of two disabled turns.
 
==See also==


Review the [[Wikipedia:Interchange_(road)|Wikipedia article on Road Interchanges]] for further information on this topic.
Review the [[Wikipedia:Interchange_(road)|Wikipedia article on road Interchanges]] for further information on this topic.


{{ReturnTo | Junction_Style_Guide | the Junction Style Guide}}
{{ReturnTo | Junction_Style_Guide | the Junction Style Guide}}
[[Category:Style Guides]]
[[Category:Style guides]]

Latest revision as of 06:25, 14 August 2022

An interchange is a road junction where traffic can move between roads that do not intersect. The roads are connected by ramps, and if they cross, the crossing is grade-separated. They are most commonly used where one or more roads is a controlled-access highway. Complex interchanges may contain many highways and local roads meeting within small areas. Many different layouts have been developed by traffic engineers to optimize interchanges for size, complexity, traffic safety, navigation, and unimpeded traffic flow.

This article is a sub-article of the Junction Style Guide. As such, this article is a style guide as well. Representing interchanges on the map can be exacting and difficult. The guidance on this page will help editors to create accurate and usable map versions of these interchanges. The following sections discuss the proper style for ramps, interchanges, and some common interchange designs. Note that some interchanges may be a hybrid of these basic designs where one side or quadrant of the interchange may differ from the others. Also note that since interchanges often involve grade-separated crossings, the road elevation of the segments becomes important. If two roads cross without connecting directly, their elevations must be different.

Before reading through this article, be sure to fully understand the information in the Junction Style Guide.

Ramps

Ramps have a very specific purpose in Waze. They are intended to connect segments of minor highways, major highways, and freeways to roads where there are no at-grade crossings.

The  Ramp  type is used extensively in interchanges for three reasons.

  • Ramp segment names are not displayed on the map.
  • Ramp segments have essentially no penalty, so they can be used to connect freeways and major highways with each other without causing problems.
  • Ramp segments are relatively thin but show at wide zoom levels, so interchanges do not distract from highways but can be seen at high speeds.

When to use ramps

Use of the  Ramp  type is governed by the following rules:

Geometry

Exits, forks, and wayfinders

This section concerns the geometry of the following junctions:

  • exits, which are junctions at which one outbound segment (typically a ramp) carries traffic off of a road and the other outbound segment continues the same road as the entry segment;
  • forks, which are junctions at which either both or neither outbound segment continues the same road as the entry segment; and
  • wayfinders, a type of exit or fork which is set up to instruct the driver to stay on the road they're already on.

When mapping an exit or fork (or wayfinder), there is one guiding question: is there one clear straight-ahead path? That is, does one and only one outbound segment clearly continue the same path as the inbound segment?

Where there is a clear straight ahead path

The straight ahead path should be more or less straight, with a smooth transition.

The diverging path should be configured as follows:

  • First, place the first geometry handle of the diverging segment as follows:
    • on freeway exits and other similarly-configured ramps, at the nearest point to the exit from the following:
      • If there's no solid white line, at the gore point (or "theoretical gore", i.e., where the painted lines diverge)
      • If there's a solid white line, at its beginning
      • On a multi-lane exit, at the gore point or solid white line between the inner exit lane and the adjacent continuing lane
      • 1/4 mile before the gore point, on exits with a longer solid white line
      • Halfway between the gore points of the exit and the previous exit
    • on at-grade connectors, at the gore point.
      Use the natural departure angle for a segment with a true departure angle of at least 20°.
  • Next, grab the node itself, where the segments meet, and adjust the geometry of the exit itself as follows:
    • If the actual path of the exit diverges from the inbound path by less than 20°, adjust the node to create a 20° departure angle. This will allow for consistent timing of exit instructions and make it easier to report closures in the Waze client.
    • If the actual path of the exit diverges immediately from the inbound path by more than 20°, adjust the node such that the exit path follows its true natural departure angle.
  • Finally, ensure that the last geometry handle before the node is at least 40 feet ahead of the node, and that the second geometry handle on the diverging path is at least 40 feet beyond the first geometry handle.

Where there is not a clear straight ahead path

Essentially symmetrical: yes, departure angles of outbound segments are very close (7° and 8°). At least 15°: yes (de-select any segments and select the node to check).

Whether both outbound paths are or neither outbound path is straight ahead:

  • First, adjust the inbound segment geometry to follow the inbound segment's true path.
  • Next, set the first geometry handles of both outbound segments in line with the gore point.
  • Finally, grab the node and adjust such that the angle between the outbound segments is at least 15°:
    • If following the true natural departure angles of the outbound segments leads to an inner angle of more than 15°, then do so.
    • If the outbound segments are equally straight ahead, ensure that the outbound paths at the node are essentially symmetrical.

Re-entry

Where a ramp or AGC enters the flow of traffic, the driver's path should do so smoothly and naturally. Place the final geometry handle at the gore point or end of the solid white line, then grab the node and pull it along the road to create a smooth, natural entry angle.

Where an exit ramp ends at an intersection with a road, generally, map as you would any other intersection.

  • If an exit ramp forks into distinct and separate paths, particularly on either side of a painted or physical island, create a fork with multiple outbound ramp segments.
  • Where the ramp continues as a single roadway, and in some cases where a traffic island exists but is not particularly large or significant, a single ramp segment will suffice.

Generally, the same rules used to determine whether to map at-grade connectors can be used to determine whether to map a ramp island separately.

Mapping considerations

Consider the following when editing interchanges and their component junctions.

Turn instructions

Where the inbound segment is a  Freeway ,  Major Highway , or  Minor Highway , if an instruction is given to a specific outbound segment,

  • The default instruction to an outbound  Ramp  segment on the right will be "Exit right".
  • The default instruction to an outbound  Ramp  segment on the left will be "Keep left."
  • The default instruction to an outbound  Freeway ,  Major Highway , or  Minor Highway  segment will be Keep left or Keep right.

As such, if a different instruction than the default is desired in any of these situations, use a turn instruction override.

Road names

Guidance for naming highway and ramp segments is found in the road names article.

Concurrent routes

If an exit carries a concurrent route away from the highway (e.g., a U.S. highway that was carried by an interstate up to the exit but splits off at the exit), that route designation should be added as an alternate name on all ramp segments that carry it. Note that this may affect the expected behavior of audible instructions, such that turn instruction overrides may be needed.

Using road name inheritance

In some situations, name inheritance should be used to provide optimal instructions. If a ramp is unnamed ("no name" box checked), the name of the next named road along the route will propagate backwards in navigation instructions. This is useful both for the sake of simplicity and for giving more specific instructions to traffic at exits with ramp forks. If an unnamed ramp is used at an exit and subsequent named ramps are used after the fork, drivers will see the name of whichever side of the fork they need to go to before they exit the highway. This method will provide more sufficient notification of an approaching decision point than a named exit ramp would, and it should be used as long as the names of both ramp forks are visible on signs at the start of the initial ramp. If an exit ramp has multiple lanes with a sign or part of a sign over each lane, using this method can even function as a form of lane guidance. If the example on the right from the MUTCD were mapped using name inheritance, the ramp exiting I-42 would not be named. The ramp that goes to I-17 southbound would be named "Exit 36: I-17 S / Portland" and the ramp that goes to I-17 northbound would be named "Exit 36: I-17 N / Miami." This would produce the following instructions:

  • Traffic heading south on I-17 would receive
    1. at the exit: exit right to Exit 36: I-17 S / Portland
    2. at the fork: keep right to Exit 36: I-17 S / Portland
  • Traffic heading north on I-17 would receive
    1. at the exit: exit right to Exit 36: I-17 N / Miami
    2. at the fork: keep left to Exit 36: I-17 N / Miami

Note that even though the exit number is by design not shown on signs at the ramp fork, it should be included in the names of the ramps for proper instructions at the exit. If signs at the ramp fork differ more significantly from signs at the exit, a different method of naming should be used.

Name inheritance, but signage on consecutive signs are different

If separate or split signs exist for traffic at an exit, but the signs at the ramp fork differ significantly from them, such as being further split or showing additional route numbers or control cities, the following method can be used:

  1. Leave the exit ramp unnamed
  2. At the ramp fork create a turn instruction override for no instruction going into a stub ramp segment of 19.69 ft (6 m)
  3. Name the stub according to the sign at the exit
  4. At the junction of the stub with the next ramp segment create a turn instruction override to match the expected instruction at the ramp fork, either keep left or right
  5. Name the next ramp segment according to the sign at the ramp fork or leave it unnamed to inherit farther ramp names

Because of name inheritance, the shortness of the stub, and the combination of turn instruction overrides, the name of the stub will be used in instructions at the exit, and the name of the ramp past the stub will be used at the ramp fork. This method should only be used when it's not possible to replicate what drivers see on guide signs using simple naming or name inheritance.

Wayfinders

A wayfinder is defined as any junction configured to instruct drivers to stay on the road they're already on. Wayfinders are generally used where, for one reason or another, the continuation of the highway is not obvious to drivers. For criteria and further details on mapping wayfinders, see wayfinder and turn instruction override.

Configurations

Diamond

See also: Diamond interchange article on Wikipedia

Common in wide open spaces where land acquisition and geography are not concerns, this interchange design has ramps equally distributed across all 4 quadrants.

In the simplest form, this can be represented as single connections from the ramps to the surface street.

The straight through motion from the exit ramp to the entrance ramp should typically be enabled, if legal to drive. Under normal circumstances, the big detour prevention mechanism discourages the routing server from routing someone off the freeway and directly back on. When the freeway path between the ramps is closed, or slow enough to overcome the Detour penalty, this off-on route may be given as a desirable alternative.

Be aware that the big detour prevention penalty is intended to discourage routing that leaves a freeway (or highway) and returns to the same freeway (or highway). Therefore, at least one name (primary or alternate) of the freeway/highway segment before the exit ramp must exactly match one name (primary or alternate) of the freeway/highway segment after the entrance ramp to trigger the penalty. For further information see the big detour prevention mechanism page.

If the ramps connect to the surface street at multiple points, restrict turns which should use another ramp. Review the section on ramp geometry and complexity for more details on this topic.

First we see the turns that must be restricted for the exit ramps:

Then we see what must be restricted for the entrance ramps:

Note on elevation: The single surface street segment between the inner most ramps should be either raised or lowered in relation to the freeway segments depending on the actual geography at the interchange.

Cloverleaf

See also: Cloverleaf Interchange article on Wikipedia

In a cloverleaf Interchange, left turns are eliminated from all movements between the freeway and the surface street. First check the exit ramps.

Then check the entrance ramps for illegal turns.

The connections to the freeway segments may be treated in two ways:

  1. (top) we can have the inner entrance and exit ramps have their own junction nodes with the freeway. Do not use this approach if there are collector/distributor lanes (or a similar situation) involved.
  2. (bottom) we can have the entrance and exit ramps share a single junction node with the freeway. This allows us to eliminate the very short freeway segment that may exist between the inner entrance and exit ramps.
    It is best to offset this shared junction onto the entrance ramp side of the surface street. This prevents the junction from accidentally being connected to the surface street or looking like it does. We favor the entrance ramp side, because this would result in a slightly earlier exit instruction which is, of course, preferred over a late exit instruction. Use turn instruction overrides from the entrance ramp to give no instruction to the freeway and an exit instruction to the exit.

The determining factor of which design to use will partly depend on the actual size and scale of the specific interchange and if there is a collector/distributor involved.

Note on elevation: The single surface street segment between the inner most ramps should be either raised or lowered in relation to the freeway segments depending on the actual geography at the interchange.

Folded diamond

See also: Discussion of Folded Diamonds and A2/B2 Partial Cloverleafs on the Partial Cloverleaf Interchange article on Wikipedia

Geography or property ownership may prevent the ability for an interchange to be constructed with all ramps evenly distributed across the 4 quadrants of the interchange. When only two quadrants are used, it is typically called a folded diamond (basically a sub-type of a partial cloverleaf interchange). The ramps may be all on one side (as in the examples in this section) or they may be located in diagonally opposed quadrants.

The unique situation presented by the folded diamond arrangement is having both entrance and exit ramps terminating on the same side of the surface street. Ideally both ramps should terminate on the same junction node to permit easy restriction of the illegal and usually impossible ramp-to-ramp movement.

'

Like with a basic diamond interchange, often it will be necessary to represent the ramps making multiple connections to the surface street. Be sure to read the Simple is better section in the Junction Style Guide.

Restrict all non-permitted turns.

Note on elevation: Similar to a basic diamond interchange, in most cases only the segment of the surface street that crosses the Freeway segments will need to be adjusted up or down.

Single-point urban interchange (SPUI)

See also: Single Point Urban Interchange article on Wikipedia

A SPUI is a very space and flow efficient design, but it takes extra attention to ensure the turns are correct. And as the name indicates, ideally there should be a single junction in the center. You may need to tweak the geometry of segments a bit off of alignment from the real physical world, but it should be minor if the interchange is a true SPUI.

The outer branches of the exit ramps are similar to a diamond interchange and ramp to ramp routing should be enabled if possible and legal. However, in many SPUIs such ramp to ramp routing is not possible:

Where things get complicated is the inner branches leading to the single point. You need to avoid ramp-to-ramp in two directions and a reverse flow turn. Note: The ramp-to-ramp motion to facilitate a U-turn (the top left arrow in the image below) may or may not be allowed depending on the specific interchange. Please validate this turn.

Luckily the entrance ramp restrictions are similar to the diamond interchange:

If you were to look at all the restricted turns at once, you may get the false impression that something is very wrong. But as you now know, a SPUI has almost as many restricted turns as allowed ones.

Note on Elevation: The two surface street segments (between the outer ramps and connected to the single point) and the four ramp segments connected to the single point should all be the same level, either one higher or one lower than the elevation of the freeway segments above/below the single point.

Collector/distributor lanes

These are lanes parallel to, but physically separated from, the lanes of a Freeway that serve to keep merging traffic out of the flow of through traffic on the mainline freeway.

Collector/distributor lanes serve as either:

  • some of the ramps in an interchange, or
  • local lanes in configurations with local-express lanes.


Collector/distributor interchange

Some interchange configurations make use of collector/distributor lanes to separate lower-speed merging traffic from high-speed through traffic. This is often used in cloverleaf interchanges and in groups of nearby exits.

Collector/distributor cloverleaf

This is a cloverleaf interchange that is connected to a collector/distributor instead of directly to the main roadway. Map collector-distributor cloverleaf ramps as you would any other ramp.

The detour prevention mechanism will discourage Waze from routing users onto the collector-distributor and back onto the freeway – as long as the street name on the freeway is the same before, throughout, and after the collector-distributor. Previously this feature was not available and the ramps were set up to restrict the through route. Some of these ramp configurations may still be set up that way, so they can now be configured as pictured above with the through route enabled.

Complex collector/distributor interchange

Collector-distributor lanes used in an interchange on I-81 in Christiansburg, Virginia (Exits 118A-B-C)

Where collector/distributor lanes are used as part of an interchange, use the  Ramp  type for the collector/distributor lanes. Name the ramp segments as you would any other ramp segment.

Ensure that a name on the Freeway segments is consistent before and after the collector/distributor lanes, so that the detour prevention mechanism will prevent Waze from routing users erroneously.

Local-express lanes

A local-express lane configuration on I-96 in Livonia, Michigan

Local-express lanes are similar to collector/distributor interchange, but on a larger scale. While collector/distributor interchanges typically have an exit number or numbers, local-express lanes typically share the same name, differentiated by "Local" for the collector/distributor lanes and "Express" for the thru lanes.

A local-express lane configuration is not technically an "interchange"; however, since its physical characteristics are similar to those of a complex collector/distributor interchange, it is discussed here.

Where collector/distributor lanes are used as part of a local-express lane configuration,

  • use the same type (most likely  Freeway ) for the local lanes as is used for the express lanes, and
  • name the road as it is signed: typically "[Name] Local [Direction]": for example, "I-96 Local W" for local lanes (and "I-96 Express W" for the corresponding express lanes).

Diverging diamond (DDI)

See also: Diverging Diamond Interchange article on Wikipedia.

Diverging diamond interchanges (DDI) are a type of diamond interchange in which the two directions of traffic cross one another on each side of a limited-access roadway. A DDI may pass over or under the limited-access roadway.

This type of interchange is unusual, in that it requires traffic to briefly drive on the opposite side of the road from what is customary for the jurisdiction. However, the design of the Diverging Diamond Interchange controls the driver's line of sight to ensure the cross-over action feels natural and goes unnoticed.

Segment directionality

Flow of traffic within a diverging diamond interchange

All ramp and surface street segments are set as one-way. If you are creating a DDI along a road which is not divided, divide the road, first.

For more details on how to properly divide/un-divide a road, see Best map editing practice § Dividing and un-dividing divided highways.

At-grade intersections

Junctions

As with all at-grade intersections in Waze, all DDI at-grade intersections are modeled with junction nodes, including the two signaled intersections where opposing directions of traffic "cross over" each other (inner surface road junctions). A DDI may also have two outer surface road junctions, where the one-way segments transition to two-way road segments.

Turn restrictions
Overview

There are four junctions in a DDI at which the turn restrictions must be checked - two inner surface road junctions where traffic crosses, and two outer surface road junctions where the road divides/joins on each side of the DDI.

All restricted turns within a DDI (displayed by using Shift+Z).
Inner surface road junctions

Disable the two turns from one-way segments to the segments carrying traffic the opposite direction at both inner surface road intersections, for a total of four disabled turns.

Outer surface road junctions

Disable the single turn from the one-way segment carrying traffic exiting the DDI to the one-way segment carrying traffic entering the DDI at both outer surface road intersections, for a total of two disabled turns.

See also

Review the Wikipedia article on road Interchanges for further information on this topic.